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Abstract

We develop a class of univariate and multivariate life distributions for
components and systems which operate in an unknown environment. The
environment is assumed to be dynamic and is described by a shot-noise process.
Special cases result in a univariate distribution with monotone hazard rates, and
what appears to be a new family of multivariate exponential distributions with a

singular component.
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1. Introduction

Consider a single or a two-component system which operates in an
environment that may or may not be identical to the test bench environment. The
component lifelengths, when assessed under the test bench environment, are assumed
to have failure rates \(u) > 0, i=1, 2, for u > 0. We shall assume that the nett
effect of the operating environment is to modulate )\i(u) to )\i(u) (), i=1, 2, where
M(u) is unknown for all u > 0. If at any time u, the operating environment is
judged harsher (gentler) than the test bench environment, then ) > () §;

7(u) = 1 would correspond to the case in which the operating environment and the
test bench environment are identical. Given Al(u), Az(u) and M(u), for all u > 0, we
shall judge the component lifelengths independent. When 7(u), u > 0, is unknown,
we shall describe our uncertainty about it by a suitable stochastic process

{n(u), u > 0}. Under such circumstances, there is an induced dependence between
the lifelengths of the two components, the nature of which depends on our choice
of {NM(u), u > 0}. The case )\i(u) = Ap i=1, 2, with 7(u) = 7, and uncertainty about
n described by a gamma distribution, has been considered by Lindley and
Singpurwalla (1986), Currit and Singpurwalla (1989) and the references therein; the
case wherein {f(u), u > 0} is described by a gamma process has been considered by
Singpurwalla and Youngren (1989). In this paper, we shall suppose that {n(u), u > 0}

is described by a “shot-noise process”, a motivation for which is given below.

Suppose that the operating environment consists of a series of events, called
“shots” or “jolts”, whose effect is to induce stresses of unknown magnitudes Xk’

k=0, 1, . . ., on the components. The jolts occur over time according to a Poisson

process with a known rate m(u), u > 0, and suppose that whenever a stress of




magnitude X occurs at an epoch s, then its contribution to M(s+u) is Xh(s+u), where

the attenuation function h(-) is positive and nonincreasing. Thus, if

T(O) < T(l) < TQ) < ..., are the successive epochs at which stresses of
magnitudes XO, Xl’ XZ’ . . ., respectively, occur, then
[«

with h(u) = 0, for u < 0. The process {7fj(u), u > 0} is called a shot-noise process;

see Cox and Isham (1980), p. 135.

As an example of the above, it may happen that an unexpected surge of
power in a control system will temporarily increase the likelihood of failure, but the
overload often decays, lowering the likelihood of failure. Another example pertains
to the mortality rate of individuals suffering a heart attack. Since the heart
muscle repairs itself, the rate declines with elapsed time since trauma, but the
successive bouts of attack have a cumulative effect on the rate. Situations which
necessitate a consideration of “cumulative damage” as the cause of failure can be
incorporated within the framework of shot-noise processes by making h(u) a

constant, for all u > O.

When A;(u), the inherent (or base-line) failure rate is such that \;(u) = \;,
for u > 0, then assuming that {n(u), u > 0} is a shot-noise process is equivalent to
assuming that )\iT](u), the failure rate of the i-th component under the operating
environment, is also a shot-noise process. To ensure that the failure rate is not
annihilated during the initial phase of the shot-noise process, we require that

T(O) = 0,

[




We also need to make the following assumptions:
Al Xk J T(k)’ for all k, where “lI” denotes independence;
A2. XiJ.LXj, for all i=£j, with Xi’s having a common distribution G, and

A3. m{t) > 0 and is almost everywhere differentiable.

2. The Survival Functions

2.1 The Univariate Case

Let L denote the lifelength of a single component system whose inherent
failure rate is A\, and which operates in an environment for which {nu),u >0} isa
shot-noise process with the parameters described in Section 1; assume that Al - A3
hold. Let M(1) = I; m{u)du, Ht) = I; h(u)du, and suppose that G* is the Laplace
transform of G; then,

Theorem 2.1. Given A\, M{t) and H(1), F(r N\, M(t), H(t)), the survival function of L
at 7 > G, is

,
G*(AH(T)} ® exp [—M(7) + [ GMAH(T)} m(7 —uldul.

Lemoine and Wenocur (1986) outline a proof of the above theorem, but have
overlooked the requirement that T(O) must be 0. The proof is facilitated by
Lemma 2.2. Consider the time interval [0, T), and let T(l) < TQ) <. .. < T(n) be
the epochs of events in a nonhomogeneous Poisson process with rate m(u), u > 0.
Then, if M“1 exists, Ti’ i=1, ..., n the unordered epochs, are independent and
identically distributed as a rendom variable U whose density at u, 0 < u < 7T, is

m{u)/M(T).

Proof of Lemma 2.2. If we rescale the time axis by M(t), then, on the new

time scale, the epochs M(T(l)) < M(T(z)) < ...,are Poisson with rate 1 [see Cox




and Isham (1980), p. 48], Thus, given n, M(T(l)) < M(T(z)) < - < M(T(n)) are
distributed as the order statistics in a sample of size n from a uniform distribution
on [0, M(T)), from which it follows that the unordered epochs M(Ti), i=1,...,n

1 exists,

are independent and uniform on {0, M(7)). Hence, given that M~
PIM(T) < w = P(T; < MMu) = ulM(m) = M M @IM(7), and so

P(T; < w) = M(u)M(T), from which the result follows. il

Proof of Theorem 2.1. Suppose that n jolts occur over the time interval
[0, T) at epochs T = (T(O) < T(l) < - < T(n)’ with each jolt inducing a stress of

magnitude X. Given A\, n, T and X, the survival function of L at time 7, is

k=1

n
ex;{—{x X H(T) + A D X HOT — T(k))}],

which because of A2 and Lemma 2.2 can also be written as
exp[— (A X H(T} [exp{— N X H(T — wit.

Unconditioning on X, and then on U, the above becomes
n
-

G*(\ H(7)) I G*(\ Hr — w) m(u) du
0 M(7)

Our final step is to uncondition on n — which has the probability mass

function e-M(T) (M(7)"/n! — and to simplify the ensuing expressions. i




2.2 The Bivariate Case

Let Li’ i=1, 2, denote the lifelengths of a two component system, with the
i-th component having )‘i as its inherent failure rate. Suppose that the system
operates in the environment described before. Then,

Theorem 2.3. Given A\, Ay, M(t) and H(®), ?(‘rl, SRS M(t), H(t)), the joint
survival function of Ll and L2, for 0 < Ty < Ty is
Ty
G'[RIH(TI) + MH(T5)] @ exp L G'[kl H('rl—ul) + X H(‘l'z—ul)]m(ul)du1

To

P

® exp ‘[ G‘[)\2 H(Tz——u2)]m(U2)dU2 —_ M('T2)
71
The proof of this theorem is facilitated by an elaboration of Lemma 2.2.
Lemma 2.4. Consider the time interval (‘rl, ‘r:), and let T(n1+1) < T(n1+2) < - K
T("2) be the epochs of events in a nonhomogeneous Poisson process with rate m(u),
u > 0. Then, if M'1 exists, T}, i=(n1+1), v e e (n2), the unordered epochs are
independent and identically distributed as a random variable U whose density at u,

Ty <u < Tyis m(u)/(M(7-) — M(T ).

Proof of Lemma 2.4. As in Lemma 2.2, we rescale the time axis by M(t) and
observe that on the new scale, given (n» — ny), the epochs M(T ) < M(T )
2 1 (n1+1) (n1+2)
< - & M(T(nz)) are distributed as the order statistics in a sample of size
(ny — "1) from a uniform distribution on [M(‘rl), M(‘rz)); the proof now follows via

arguments analogous to those in the proof of Lemma 2.2. ]

Proof of Theorem 2.3. Parallels that of Theorem 2.1, with the additional

proviso that for a Poisson process, the number of events in [7'1, 7'2) is independent




of the number of events in [0, 7'1).

Remark 2.5. The marginal survival functions of L1 and L2, which follow from
Theorem 2.3 by setting T and Ty equal to zero, respectively, agree with the result
of Theorem 2.1.

Remark 2.6. A generalization of Theorem 2.3 to the multivariate (multi-component)

case is straightforward, with the k > 2 variate version calling for (k-2) additional

parameters.

3. A New Bivariate Distribution with Exponential Marginals

A consideration of some special cases of Theorem 2.3 results in some
interesting distributions, one of which is highlighted here. Suppose that for all
u > 0, h(u) = 1, m(u) = m, and G is 2 gamma distribution with shape o and scale b.
Then, from Theorem 2.3, we see that for a = 1, the joint survival function of L1

and L2, for 0 < Ty < 7 is

Flrpy 7ol by by ) = (i) (2 T2 ]-mb/()““z)
Tes T 3 s O, M
1210 ™2 BN THA, T b+>\171+)\272)
-mb/)\2 mT
[t ] M G

b+)\2('r 2-71)

and so the marginal survival function of L2, for 7, > 0, is

i\
b+>\272] 2 -mT,
— .

o

o~
(8]
()
~—

Foy(7yihy b, m) = |




Verify, from Theorem 3.1, that when a = 1, the marginal survival function of L2,

for Ty 2 0, is of the form

N

If we assume that )«1 = )\2 = \, and that m = M\/b, then for 0 < Ty < Ty

(3.1) becomes

— 1- mTy + mT, -mT5
F('rl, 'rzl)\, b, m) = [+ mry * m7y e s 3.9
and, for 74 > 0, (3.2) becomes
_ -mT 4
F2(7'2|)\, b, m) = e s (3.5)

an exponential distribution. The results for Ty £ Ty and ?1(711)\, b, m), the
survival function of Ll’ are symmetric, and so the joint survival function may be

written

— 1-m min(‘rl,'rz) + m max(71,72) - m max(‘rl,‘rz)
F(T,, TH\, b, m) = e . (3.6)
2 1+ m('rl + 72)

Thus, the nonageing property of a component in the test environment will be
preserved in a shot-noise environment, if the stress inducing jolts are Poisson with
a rate \/b, if the stresses induce a cumulative damage on the component, and if the

magnitudes of stress are exponential with a scale parameter b.




In Figure 3.1, we describe the behavior of r2(72), the failure rate function of
(3.2) as a function of the relationship between A2/b and m. Verify that
r2(72) = ()\2/b) (a1+m7)yQ +()\2/b)‘r), so that r2(7'2) — m 8s Ty —> %, and that r2(7'2)
is increasing (decreasing) in TS and asymptoting to m depending on whether

(\y/b) < (>) m.

Failure
Rate
()\2/b) >m

~_y

\

\E—__
m ()\2/b) = m
=
N (/) < m
Time T2

Figure 2.1. Behavior of the Failure Rate Function of ?2(0)

An intuitive explanation of the above behavior of the failure rate function,
as a function of the relationship between (A\/b) and m is given in Youngren (1988).
Of particular interest is the reason for its asymptoting to m. Our explanation here
is that under a shot-noise process with cumulative damage, the failure of a
component occurs when the damage exceeds a threshold. With the inter-arrival
times between the jolts being exponential, the situation here is analogous to the
behavior of a multicomponent system, with component lifelengths being exponential,

for which the life distribution is a gamma, whose failure rate asymptotes to a

constant.
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